Date: 10/3/2016

Catchment Information

Pre-development Catchment and Stream Properties

Reach	Overland			Natural Stream			
Neach	Lo (m)	n*	So (%)	Ld (m)	n	Sd (m/m)	R (m)
AB	150.0	0.0275	3.00	134.0	0.035	0.011	0.32
AC	156.0	0.0275	2.00	189.0	0.035	0.049	0.32
AD	180.0	0.0275	3.00	156.0	0.035	0.053	0.32

Post-development Catchment and Chennel Properties

Reach	Overland			Natural Stream			
Neach	Lo (m)	n*	So (%)	Ld (m)	n	Sd (m/m)	R (m)
AB	12.194	0.045	2.50	490.0	0.015	0.009	0.218
AC	12.194	0.045	2.50	356.0	0.015	0.024	0.225
AD	12.194	0.045	2.50	287.0	0.015	0.026	0.231

Computer the Pre-Development Time of Concentration, tc

Calculate to & td:

$to = 107xnxLo^{(1/3)}$	td=	nxLd
So^(1/5)		60xR^(2/3)xSd^(1/2)

Reach AB:-		Reach AC:-		Reach AD:-	
to =	12.6 minutes	to =	13.8 minutes	to =	13.3 minutes
td =	1.6 minutes	td =	1.1 minutes	td =	0.8 minutes
tc=to + td =	14.1 minutes	tc=to + td =	14.9 minutes	tc=to + td =	14.2 minutes

Thus, the pre-development tc = 14.9 minutes (the longest)

Computer the Post-Development Time of Concentration, tc

Reach AB:-		Reach AC:-	Reach AC:-		Reach AD:-	
to =	9.2 minutes	to =	9.2 minutes	to =	9.2 minutes	
td =	3.6 minutes	td =	1.6 minutes	td =	1.2 minutes	
tc=to + td =	12.8 minutes	tc=to + td =	10.8 minutes	tc=to + td =	10.4 minutes	

Thus, the post-development tc = 12.8 minutes (the longest) tc (pre) - tc (post) = 2.1 minutes (tc (post) is shorter than tc (pre)

Computer the rainfall intensity, i

The nearest rainfall station is STATION ID=

SG SIMPANG AMPAT

5504035

Table 2.B1

λ	К	Θ	ŋ
62.089	0.22	0.402	0.785

PRE-DEVELOPMENT		<u>AB</u>	<u>AC</u>	<u>AD</u>	
Height of Drain (m)-D Width of Drain (m)-B Slide Slope, Z Area of Drain (m^2)-A Perimeter of Drain (m)-P	= = = =	0.60 0.900 0.5 0.720 2.24	0.60 0.900 0.5 0.720 2.24	0.60 0.900 0.5 0.720 2.24	
POST-DEVELOPMENT		<u>AB</u>	<u>AC</u>	<u>AD</u>	
Height of Drain (m)-D Width of Drain (m)-B Slide Slope, Z Area of Drain (m^2)-A Perimeter of Drain (m)-P	= = = =	0.80 0.600 0 0.480 2.20	0.90 0.600 0 0.540 2.40	1.00 0.600 0 0.600 2.60	

Determine the pond outflow limits

Condition	Cpost	Cpre
ARI<10 yr	0.90	0.40
ARI>10 yr	0.95	0.50

CHECKING FOR THE PRE-DEVELOPMENT DISCHARGE

~ Pre-development Discharge

ARI (year)	Storm duration, d (in term of tc)	d (min)	i (mm/hr) (fig. AX3.8.1)	Cpre	A (ha)	Qpre (m3/s)
10	tc	14.9	135.00	0.40	2.12	0.32
50	tc	14.9	190.00	0.50	2.12	0.56
100	tc	14.9	210.00	0.50	2.12	0.62

The pre-development flows for ARI 10, 50, 100 are 0.32 m3/s, 0.56 m3/s and 0.62 m3/s.

Based on the On Site Detention Calculation attahced, the Permissible Site Discharge for all the ARI is 0.1198m3/s.

Checking Proposed systems of stormwater management to post development peak flow ARI at outlet.

ARI	Pre-Discahrge flow, m ³ /s	Post-Peak Flow, m ³ /s	Percentage, %
10	0.32	0.1198	-62.33
50	0.56	0.1198	-78.59
100	0.62	0.1198	-80.63